Kako Izračunati Verjetnost Dogodka

Kazalo:

Kako Izračunati Verjetnost Dogodka
Kako Izračunati Verjetnost Dogodka

Video: Kako Izračunati Verjetnost Dogodka

Video: Kako Izračunati Verjetnost Dogodka
Video: Verjetnost 35 - pogojna verjetnost 2024, November
Anonim

Verjetnost običajno razumemo kot številčno izraženo mero možnosti, da se dogodek zgodi. V praksi se ta ukrep kaže kot razmerje med številom opazovanj, pri katerih se je zgodil določen dogodek, in skupnim številom opazovanj v naključnem poskusu.

Kako izračunati verjetnost dogodka
Kako izračunati verjetnost dogodka

Potrebno

  • - papir;
  • - svinčnik;
  • - kalkulator.

Navodila

Korak 1

Za primer izračuna verjetnosti razmislite o najpreprostejši situaciji, v kateri morate določiti stopnjo zaupanja, da boste naključno dobili katerega koli asa iz standardnega nabora kart, ki vsebuje 36 elementov. V tem primeru bo verjetnost P (a) enaka ulomku, katerega števec je število ugodnih izidov X, imenovalec pa skupno število možnih dogodkov Y v poskusu.

2. korak

Določite število ugodnih rezultatov. V tem primeru bo 4, saj je v običajnem krogu kart ravno toliko asov različnih barv.

3. korak

Preštejte skupno število možnih dogodkov. Vsaka karta v kompletu ima svojo edinstveno vrednost, zato obstaja 36 možnosti izbire za standardni krov. Pred izvedbo poskusa morate seveda sprejeti pogoj, pod katerim so vse karte v krovu in se ne ponavljajo.

4. korak

Ugotovite verjetnost, da se bo ena karta, izvlečena iz krova, izkazala za asa. Za to uporabite formulo: P (a) = X / Y = 4/36 = 1/9. Z drugimi besedami, verjetnost, da boste z odvzemom ene karte iz niza prejeli asa, je razmeroma majhna in je približno 0, 11.

5. korak

Spremenite pogoje preizkusa. Recimo, da nameravate izračunati verjetnost dogodka, ko se izkaže, da je naključno izvlečena karta iz istega niza pik as. Število ugodnih izidov, ki ustrezajo pogojem eksperimenta, se je spremenilo in postalo enako 1, saj je v naboru le ena karta navedenega ranga.

6. korak

Priključite nove podatke v zgornjo formulo P (a). Torej P (a) = 1/36. Z drugimi besedami, verjetnost pozitivnega izida drugega poskusa se je zmanjšala za štirikrat in znašala približno 0,027.

7. korak

Pri izračunu verjetnosti dogodka v eksperimentu ne pozabite, da morate izračunati vse možne izide, ki se odražajo v imenovalcu. V nasprotnem primeru bo rezultat prikazal poševno sliko verjetnosti.

Priporočena: